Hall Ticket Number:										

Code No.: 212

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. II Year I – Semester (Main) Examinations, January – 2016

Operations Research

Time: 3 hours

Max. Marks: 70

Note: Answer ALL questions in Part-A and any FIVE questions from Part-B

Part-A (10 X 2=20 Marks)

- 1. Define i) feasible solution ii) degenerate solution
- 2. Construct the dual to the primal problem Maximize $z = 3x_1 + 5x_2$
 - $\begin{array}{c} 2x_1 + 6x_2 \leq 50 \\ 3x_1 + 2x_2 \leq 35 \\ 5x_1 3x_2 \leq 10 \\ x_2 \leq 20 \\ \text{Where } x_1 x_2 \geq 0. \end{array}$
- 3. Write mathematical model for general transportation problem.
- 4. Find the initial basic feasible solution to the following transportation problem.

			To			
From	0 ₁ 0 ₂	5	4		1	Available (units) 130 100
	03	5	4	5	6	30
Demand (u	nits)	40	50	70	100	

- 5. Define unbalanced assignment problem.
- 6. Distinguish between transportion and assignment model.
- 7. Explain 'stage' in the context of dynamic programming.
- 8. Define integer programming problem.
- 9. State minimax theorem for two person zero sum game.
- 10. Define mixed strategy.

Part-B (5 X 10=50 Marks) (All bits carry equal marks)

- 11. a) Write graphical method algorithm.
 - b) Solve the following linear programming problem by Big M Method. Minimize Z = 2x₁ + 3x₂ Subject to x₁ + x₂ ≥ 6

 $7x_1 + x_2 \ge 14 \\ \text{and} \quad x_1, x_2 \ge 0$

Contd... 2

- 12. a) Write the procedure of U-V-Method in transportation problem.
 - b) Write a short note on Transshipment problem.
- 13. a) Explain the procedure to solve integer programming problem.
 - b) Solve the following assignment problem.

à

		Operator					
		1	2	3	4	5	
	1	5	6	8	6	4	
	2	4	8	7	7	5	
Job	3	7	7	4	5	4	
	4	6	5	6	7	5	
	5	4	7	8	6	8	
			Contraction of the local of the				

14. a) A distance network consists of 11 nodes which are distributed as shown in the following table. Find the shortest path from node 1 to node 11 and the corresponding distance.

Arc	Distance
1-2	8
1-3	7
1-4	1
2-5	5
3-5	9.
3-6	2
3-7	8
4-7	10

Arc	Distance
5-8	12
5-9	7
6-9	9
7-9	6
7 – 10	13
8-11	4
9-11	2
10 - 11	15

b) Solve the following linear programming using dynamic programming technique Maximize $Z = 30x_1 + 15x_2 + 6x_3$ Subject to $6x_1 + 8x_2 + 9x_3 \le 120$ $12x_2 + 6x_3 \le 180$ and $x_1, x_2, x_3 \ge 0$

- 15. a) Explain dominance property.
 - b) Solve the following 2 \times 5 game by graphical method

			Pl	ayer E	3	
		1	2	3	4	5
Dlavor A	1	-5	5	0	-1	8
Player A	2	8	-4	-1	6	-5
						L

Contd... 3

:: 3 ::

16. a) Use two phase simplex method to solve the linear programming problem

 $\begin{array}{l} \mbox{maximize } z = 5x_1 + 3x_2 \\ \mbox{subject to } 2x_1 + x_2 \leq 1 \\ x_1 + 4x_2 \geq 6 \\ x_1, x_2 \geq 0. \end{array}$

b) Find initial basic feasible solution of the transportation problem by using Vogel's approximation method.

		А	В	С	D	E	Plant capacity
	1	1	2	6	2	3	800
	2	3	4	5	8	1	600
From plants	3	3	1	1	2	6	200
	4	4	7	3	5	4	400
Der	mano	1400	200	600	300	500	

17. Write short notes on any two of the following:

2h 1700

a) Explain the working procedure of Hungarian algorithm..

b) Define dynamic programming problem and write its applications.

c) Zero sum game and non zero sum games.
